საერთაშორისო სამეცნიერო კონფერენცია "დედამიწასა და მის გარსებში მიმდინარე გეოფიზიკური პროცესები" შრომები, ISBN 978-9941-36-147-0, თბილისი, საქართველო, 16-17 ნოემბერი, 2023 წ. International Scientific Conference "Geophysical Processes in the Earth and its Envelopes" Proceedings, ISBN 978-9941-36-147-0, Tbilisi, Georgia, November 16-17, 2023

# ASSESSMENT RESERVOIR TEMPERATURE OF WEST GEORGIAN GEOTHERMAL DEPOSIT BYAPPLICATION OF SILICA-ENTHALPY MIXING METHOD

# \*Melikadze G., \*Kapanadze N., \*\*Forizs I., \*Chikviladze E.

\*Mikheil Nodia Institute of Geophysics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia \*\*Institute for Geological and Geochemical Research, Budapest, Hungary melikadze@gmail.com

Abstract. This study to use geochemical techniques to evaluate geothermal reservoir in West Georgia. About Thirty thermal water samples were taken from existing thermal boreholes on the territory of West Georgia. The samples revealed the majority have Na-K-HCO3 composition compared to just some of them Na-K-Cl-SO4 and Ca-MgSO4-Cl. Water-type changes from Sulfate-Chloride to bicarbonate from the West to the East were also observed. Reservoir temperature estimations by silica-enthalpy method is 130 °C, 163 °C, 212 °C.

The results of this and other current studies manifest the need for further researches and the steps and methodology thereof. Key words: geochemistry, geothermal reservoir, geothermometers, silica-enthalpy mixing method.

#### Introduction

The objective of this study is to investigate the geochemical characteristics of the thermal waters. For hydrogeochemical evaluation, the commonly used Durov and L-L diagrams approach has been used. In order to assess the maximum reservoir temperature, the silica-enthalpy mixing method was applied.

#### Field survey-sampling-analytical methods

All analyses were carried out at the chemical laboratory of the Research Center of Hydrogeophysics and Geothermy, M. Nodia Institute of Geophysics, Ivane Javakhishvili Tbilisi State University. Unstable hydrochemical parameters, including temperature, pH and electrical conductivity (EC) were measured with portable field laboratory WTW 197i which was calibrated in the field prior to every sampling. Physico-chemical data of the area were subjected to graphical treatment by plotting them in different diagrams using "Aquachem 5.1" software (Schlumberger water services) and graphing package "Grapher10" (Goldensofware) in order to better understand the hydrochemical processes in the study area.

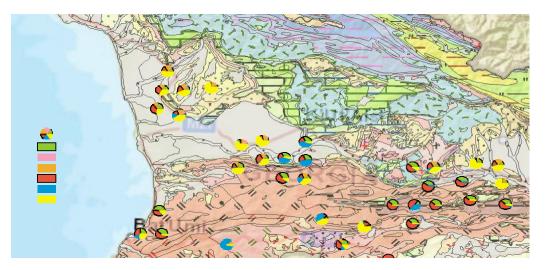



Fig. 1. Distribution of hydrochemical composition in boreholes on the territory of Georgia

#### Silica-enthalpy mixing method

Application of chemical composition silica geothermometers is a common practice to investigate the thermal state of geothermal reservoirs [4]. Geothermal water transfers heat to the contact rock while rising to the surface and they have lower temperatures than the reservoir.

In order to investigate the thermal state of geothermal reservoirs the chemical geothermometers, as a standard tool, were applied. The data of chemical analyses of water collected from the thermal boreholes and the SiO2 concentration in waters were used for subsurface temperature calculation by using silica-enthalpy mixing model.

The sample LR-01, having the minimum SiO2 concentration and temperature, was used as the non- thermal component of the mixed waters. In Figure 2 possible a, b and c mixing lines were drawn. If we assume that maximum steam loss occurs before mixing, the three lines drawn from the cold-water component of the mixed water through the mixed thermal waters till the intersection with the vertical line drawn from the boiling (100 °C) temperature - as a steam release temperature, will give 3 points A, C, E. And the intersections of drawn horizontal lines from these points to the quartz solubility curve (B, D and F) correspond to the maximum steam loss. The values of obtained points give the original silica concentration of the thermal water component. The values are about 130 °C, 163 °C, 212 °C.

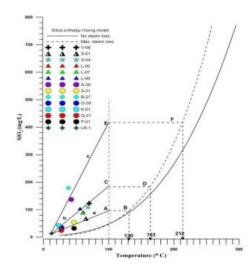



Fig. 2. Silica enthalpy mixing model (Truesdell and Fournier, 1977)

LR-1 represents the Legvtakhevi river sample, which is used for non-thermal component. Sample IDs correspond to all tables and Figures

| BoreholesN | Location                | X         | Y         | Eleva | pН    | Temper onthe | Temper in |
|------------|-------------------------|-----------|-----------|-------|-------|--------------|-----------|
|            |                         |           |           | taion |       | surface      | aquifer   |
| TS-1       | Green-house             | 42,470468 | 41,83253  | 59,3  | 7,48  | 87,5         | 192       |
| TS-2       | Tsaishi bor. 1          | 42,450018 | 41,809178 | 54,6  | 7,32  | 87,4         | 204       |
| TS-3       | Tsaishi bor. 8          | 42,451932 | 41,801215 | 33,0  | 7,34  | 95           | 194       |
| TS-18      | Tsaishi bor. 18         |           |           |       | 7,18  | 92,6         | 198       |
| KH-1       | Khobi, bor. Green-house | 41,912864 | 42,317098 |       |       |              | 158       |
| AR01       | Makhinjauri bor.        | 41,703661 | 41,669386 | 32,0  | 8,84  | 36,6         | 81        |
| AR02       | Kobuleti bor, with oil  | 41,798521 | 41,821065 | 27,4  | 8,4   | 35,7         | 59        |
| RR01       | Buturauli bor.          | 42,246238 | 41,624797 | 596,0 | 8,2   | 20,4         | 50        |
| GU28       | Qveda Dzimiti bor.      | 42,051158 | 41,981795 | 45,7  | 8,75  | 25,4         |           |
| GU37       | Sachamias-Seri          | 42,299368 | 42,040352 | 75,2  | 9,957 | 26           |           |
| JA14       | Abastumani bor. Samefo  | 42,838219 | 41,744829 | 1268  | 9,45  | 37,1         | 101       |
|            | abano                   |           |           |       |       |              |           |

Table 1. Distribution of temperature on the surface and in the depth of boreholes.

| IM41  | Sulori bor.        | 42,580505 | 42,034134 | 193  | 9,95  | 37,3 | 116 |
|-------|--------------------|-----------|-----------|------|-------|------|-----|
| IM164 | Amagleba bor 1     | 42,626776 | 42,094409 | 65,7 | 6,5   | 35,7 | 92  |
| IM170 | Amagleba bor 2     | 42,627114 | 42,095929 | 65,9 | 6,4   | 40,5 | 99  |
| IM171 | Dikhashkho bor.    | 42,576016 | 42,089551 | 51,8 | 6,5   | 35,9 | 105 |
| IM172 | Chgan-Chgvishi bor | 42,411268 | 42,126458 | 28,3 | 6,769 | 48,4 | 99  |
| IM177 | Tsikhesulori bor   | 42,472566 | 42,112028 | 31,5 | 6,64  | 54,4 | 100 |
| IM173 | Vani bor           | 42,517604 | 42,09255  | 50,9 | 7,3   | 32,5 |     |
| IM173 | Dikhashkho bor.    | 42,586878 | 42,104496 | 57,2 | 6,3   | 41,1 | 98  |

The increase of temperature amount in the aquifer depends on the depth of the boreholes and the thermalproperties of the rocks crossing by the boreholes.

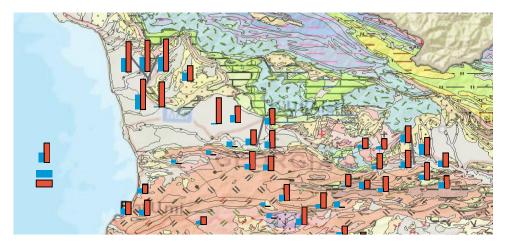



Fig. 3. Distribution of temperature in Georgian boreholes Blue column - well water temperature at the wellhead, red column - water temperature in the aquifer

## Conclusions:

Deep thermal water migrating upward mixes with shallow groundwater system and changes its chemical properties. Thermal waters have mainly Na (K)-HCO3, Na (K)-Cl-SO4 and Ca (Mg)-Cl-SO4 composition. The reservoir temperatures according to silica-enthalpy method give the values about 130 °C, 163 °C, 212 °C, that should be corrected by application of silica and cations' geothermometers.

## References

- Durov S.A. Classification of natural Waters and Graphical Representation of Their Composition. // DokladyAkademii Nauk SSSR (DAN SSSR) 59(1), 1948, pp. 87-90.
- Loid J.W., Heathcoat J.A. Natural Inorganic Chemistry in Relation to Groundwater: An introduction. // OxfordUniversity Press (OUP), New York, 1885, p. 296
- Langelier W., Ludwig H. Graphical methods for indicating the mineral character of natural waters. // Journal of the American Water Resources Association (JAWRA) 34, 1942, pp. 335-352.
- Fournier R.O. Silica in thermal waters: Laboratory and field investigations. // International Symposium onHydrogeochemistry and Biochemistry Proceedings, Tokyo 1. Clark Co. Washington D.C., 1973, pp. 122-139.
- Trusdell. A.H., Fournier R.O. Procedure for estimating the temperature of a hot water component in mixed waterusing a plot of dissolved silica vs. enthalpy. // U.S Geological Survey Res. 5, 1977, pp. 49-52.

Acknowledgments: The authors thank the Rustaveli National Scientific foundation for financial support of the project FR-18-19173 "Study of geothermal potential of Georgia by hydrogeochemical and isotope methods".