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Abstract. The work considers the application of a two-layer SD-ANN-CA model for exploring trends in land use and
land cover (LULC) and making LULC prediction for 2030 and 2035 for the city of Brest as a case study. Within the
framework of the study a set of input data is identified, the features of the used model are emphasised and a workflow
for its use is defined.
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Introduction

The land use and land cover (LULC) prediction is of great importance for urban planning, especially in
multifunctional cities, where planners must not only consider a wide range of factors — most notably spatial,
temporal, and socio-economic influences on urban development — but also place emphasis on maintaining
the quality of the environment. In today’s context, modeling provides the most reliable approach for produc-
ing such comprehensive predictions [1].

In recent years, LULC models have advanced significantly — from the earliest quantitative approaches,
which merely projected land-use demand and broad LULC trends, to modern spatial methods that simulate
and reconstruct the spatial structure of land use [2]. Commonly used quantitative approaches include system
dynamics (SD), grey models (GMs), Markov models, and artificial neural networks (ANN). Common spatial
approaches include the Conversion of Land Use and its Effects model (CLUE), the Dynamic Land System
model (DLS), cellular automata (CA), and multi-agent systems (MAS). Among these, CA models stand out
for their dynamic evolution mechanisms and their capacity for fine-scale, high-resolution analysis, which has
been extensively applied over the past decades [3, 4].

Unlike many studies that focus only on individual districts or a single type of land use, the approach dis-
cussed here adopts a more comprehensive perspective. The modeling is conducted at the scale of a major
regional city and incorporates an extensive set of land-use categories. Although the model is not fully ex-
haustive, its elaboration is sufficient for city-level analysis, as it treats the entire urban area as a single sys-
tem and integrates dynamic indicators of its development over the period 2015-2025.

Study area, material and methods

The city of Brest, which is one of the regional centres of the Republic of Belarus (population ~340 thou-
sand people, area 146 km?), was chosen as the object of the study as a representative example of a large city
with a complex and multifunctional land use structure. Its territory is marked by sharp zoning contrasts: in-
dustrial and residential districts are concentrated in the east and northeast, while the western and southern
parts preserve the natural landscapes of the Polesian Lowland, including forests and wetlands. Of particular
importance for modeling is the extensive network of green spaces and the riparian ecosystems of the Mukha-
vets and Bug rivers, which form the city’s ecological framework and serve as one of the key limiting factors
for spatial development. This combination of urbanized areas and valuable natural complexes makes Brest a
suitable case for applying LULC prediction methods at the city scale.

This study requires two types of data: spatial and numerical (Table 1). To ensure proper model opera-
tion, spatial data must be standardized, and vector data converted into raster format. The coordinate system is
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unified using Pulkovo 1942/CS63 zone C1 (EPSG:3351) through the raster projection tool. The pixel size for
all spatial data is set to 30 m using the resampling tool. The number of rows and columns in the raster data is
standardized using the “Clip” tool. To ensure compatibility between QGIS and MATLAB, the raster format
is additionally converted to ASCII-GRID format.

The data for the study are from open sources: raster images of Sentinel-2 mission, vector data of Open-
StreetMap and official statistical indicators published by the National Statistical Committee of the Republic
of Belarus.

Table 1. Set and specification of the input data.

Data Data Time Description Format /
type period P Resolution
Remote sensing im- ggég Three input datasets representing land-use conditions Raster. 10 m
agery 2025 (processed remote sensing data) ’
Digital Elevation Surface elevation data obtained from DEM analysis;
Model (DEM) 2025 used as a model constraint Raster, 30 m
Road network 2025 | Constraint for the model Shapeﬁle
(lines)
Spatial
Data Water bodies 2025 | Constraint for the model Shapefile
(polygons)
Residential areas 2025 | Constraint for the model Shapefile
(polygons)
Admmls.tratlve 2025 | Delimitation of the modeling area Shapefile
boundaries (polygons)
Protected arcas 2025 Constralpt se?t for the model (protected areas, green Shapefile
spaces, riparian buffers) (polygons)
. 2015- | Input for the SD model: urban and rural population,
Demographic data 2025 | population growth rates PDF
. 2015- | SD model: value added of primary, secondary, and
Numeri- Industrial output 2025 | tertiary sectors, along with their growth rates PDF
cal Data - . : : .
Agricultural output 2015 SD model: production volumes, per capita consump PDF
2025 | tion levels
Urban development 2015- | SD model: urbanization level, residential area, hous- PDF
data 2025 | ing demand, land allocation by categories

The acquisition of land-use data involves image mosaicking, clipping, calibration, and supervised classi-
fication in QGIS. For the purposes of this study, the territory of Brest is categorized into six land-use types:
cropland, forest, grassland, water bodies, built-up areas, and other land. Processing of DEM data for slope
and elevation is conducted using 3D analysis tools, while Euclidean distances for road networks, water bod-
ies, and settlements are calculated through spatial analysis tools.

To examine land-use change across the six categories — cropland, forest, grassland, water bodies, built-
up areas, and other land — a two-layer model is employed, integrating system dynamics (SD) and an artificial
neural network—cellular automata (ANN-CA) framework [5].

The upper layer of the model defines constraints. These include meso-level drivers influencing land-use
change and macro-level projections of demand for each land-use category. This component, developed
through system dynamics, captures general principles: it identifies factors affecting land-use change, their
key interrelations, and overall demand for each category. In effect, the upper layer communicates to the low-
er one how much land of each type will be required in the future.

The lower layer is designed to forecast and spatially allocate all six land-use categories under the im-
posed constraints. Within the ANN stage of the ANN-CA model, the neural network is trained on the factor
relationships and feedbacks identified in the SD layer to establish transition rules for subsequent simulation
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by cellular automata. These rules parameterize the CA, which operates with consideration of micro-spatial
constraints — namely, centers of land-use gravity, or areas around which changes are most likely to occur,
derived using a gravity-transfer method. In this way, the lower layer determines the precise spatial distribu-
tion of land-use categories on the map.

Furthermore, the ANN-CA outputs are validated against the macro-level constraints: a forecast map is
accepted only if the deviation between the areas of the four key categories (arable land, built-up land, forest,
and grassland) as projected by the SD model and as simulated by ANN-CA does not exceed £5%. The over-
all structure of the model is presented in Fig. 1.
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Fig. 1. Two-layer SD-ANN-CA model execution procedure.

To compare forecast results with the actual state of land use and land cover, the following equations
were employed to assess model accuracy:

€]

2

Equation (1) calculates the proportion of misclassified pixels relative to the total number of pixels in the
samples, where Ninc Ninc denotes the number of pixels incorrectly predicted by the model and Ntot Ntot the
total number of pixels. Equation (2) is applied in evaluating CA simulations, where kk represents the kappa
coefficient; Pa indicates actual accuracy; Pe the expected accuracy; Pi and the ideal accuracy (100%).
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Moving to the next stage — specifying model constraints — it is important to note that LULC outcomes
result from the interplay between anthropogenic and natural factors, which include political, institutional,
economic, cultural, technological, and environmental drivers. In existing studies, two principal categories are
generally considered: geographical (including natural) and socio-economic factors.

Spatial (geographical) drivers of land-use change are typically consistent across studies and include eleva-
tion, slope, distance to main roads, distance to water bodies, and distance to administrative centers. These fac-
tors are also incorporated in the considered model. Because spatial variables vary widely in scale and range
(e.g., slopes from 0° to over 30°, road distances from 0 to 5,000 m), they are normalized to a 0—1 range. Nor-
malization accelerates neural network training while preserving the original probability distribution.

In contrast, the proposed set of socio-economic drivers is broader and more diverse. In the model, the up-
per SD layer captures socio-economic trends for the period 2015-2025. When combined with spatial drivers,
this enables the transfer of significant socio-economic dynamics into the ANN-CA learning process, thereby
improving the capacity to identify land-use change patterns. Selected socio-economic indicators include demo-
graphic data, measures of industrial and agricultural output, and information on urban development.

Furthermore, the study extends traditional LULC analysis by incorporating constraint layers represent-
ing protected areas: protected areas, green spaces, and riparian buffers. A defining feature of this approach is
the assignment of land-use categories within these zones as fixed and unchangeable, thereby safeguarding
their ecological potential throughout the predicting horizon.

Conclusion

The study considered a method for predicting land use and land cover (LULC) change based on an inte-
grated two-layer model that combines system dynamics for the quantitative assessment of land demand with
an artificial neural network—cellular automata (ANN-CA) framework for spatial simulation.

Considered method encompasses the full research cycle: from data collection and preprocessing of spa-
tial and statistical information, specification of constraints, and construction of a transition matrix, to calibra-
tion, presicting, and the evaluation of both predictive and spatial accuracy. A key feature of the approach is
the integration of macro-level constraints derived from the system dynamics model, which ensures quantita-
tive consistency of land allocation, as well as the application of ANN-CA, which captures local trends and
spatial configurations of change.

The implementation of this method enables the generation of reproducible scenarios of land use devel-
opment for 2030 and 2035, while also providing insights into the respective contributions of macro- and mi-
cro-level factors to territorial transformation. The study outcomes will have practical relevance for spatial
planning, environmental management and sustainable regional development strategies.
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